Abstract

This paper proposes a three-dimensional dynamic model for high-speed railway trains moving over curved bridges considering the transition curves, circular curves, and superelevation. Key features of this study are to consider the nonlinear geometrical relationships and creep relationships between the wheels and rail, for which the interactive iterative numerical algorithms are developed based on the equations of vertical displacement and rolling of wheelset, and the torsional resonance conditions of the vehicle–bridge system are verified. The results show that the torsional vibration will cause amplification on vertical dynamic response of the beam on the outside edge of the curve. The deficient/surplus superelevation plays an important role in the lateral and torsional angular displacements of the bridge, and the peak of the torsional resonance response can be reduced by adjusting the practical superelevation of the curve. The variations of wheel–load reduction rate and derailment coefficient in the curve section are positively correlated to the deficient/surplus superelevation. The curve radius is the key factor affecting the wear and fatigue of wheel–rail, and when the curve radius is greater than 7000 m, the wear and fatigue can be significantly reduced. Running at a deficient superelevation level can also reduce the wear and fatigue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call