Abstract

The growing field of quantum information technology requires propagation of information over long distances with efficient readout mechanisms. Excitonic quantum fluids have emerged as a powerful platform for this task due to their straightforward electro-optical conversion. In two-dimensional transition metal dichalcogenides, the coupling between spin and valley provides exciting opportunities for harnessing, manipulating, and storing bits of information. However, the large inhomogeneity of single layers cannot be overcome by the properties of bright excitons, hindering spin-valley transport. Nonetheless, the rich band structure supports dark excitonic states with strong binding energy and longer lifetime, ideally suited for long-range transport. Here we show that dark excitons can diffuse over several micrometers and prove that this repulsion-driven propagation is robust across non-uniform samples. The long-range propagation of dark states with an optical readout mediated by chiral phonons provides a new concept of excitonic devices for applications in both classical and quantum information technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.