Abstract

Quantum interference can terminate energy growth in a continually kicked system, via a single-particle ergodicity-breaking mechanism known as dynamical localization. The effect of many-body interactions on dynamically localized states, while important to a fundamental understanding of quantum decoherence, has remained unexplored despite a quarter-century of experimental studies. We report the experimental realization of a tunably-interacting kicked quantum rotor ensemble using a Bose-Einstein condensate in a pulsed optical lattice. We observe signatures of a prethermal localized plateau, followed for interacting samples by interaction-induced anomalous diffusion with an exponent near one half. Echo-type time reversal experiments establish the role of interactions in destroying reversibility. These results quantitatively elucidate the dynamical transition to many-body quantum chaos, advance our understanding of quantum anomalous diffusion, and delimit some possibilities for protecting quantum information in interacting driven systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call