Abstract

Gel Polymer Electrolytes (GPEs) composed by 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (EMIM TFSI), ZnTf2 salt, and poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) are synthesized using n-methyl-2-pyrrolidone (NMP) as solvent. Structural and Thermal characterization of GPEs with different ZnTf2 concentrations are analyzed by ATR-FTIR, XRD, DSC and TG. Ionic conductivity versus temperature plots obeys the Vogel-Tammen-Fulcher (VTF) behavior and activation energy values are deduced from the slopes. Use of NMP solvent turns out to be a key factor for improving the Zn2+ transport inside the GPE due to the interaction between Zn2+ cations and carbonyl groups of the NMP. High values of ionic conductivity and low activation energy values, together with the high reversibility and high current density obtained in the voltammograms reveal these GPEs as good candidates to be used in Zn batteries. Furthermore, ionic liquids-based GPEs are probed in Zn/MnO2 batteries, resulting specific capacities of 125mAhg−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.