Abstract

Abstract The interaction between upper-ocean submesoscale fronts evolving with coherent features, such as vortex filaments and eddies, and convective turbulence generated by surface cooling of varying magnitude is investigated. Here, we decompose the flow into finescale (FS) and submesoscale (SMS) fields explicitly to investigate the energy pathways and the strong interaction between them. Most of the surface cooling flux is transferred to the FS kinetic energy through the FS buoyancy flux carried by the convective plumes. Overall, the SMS strengthens due to surface cooling. The frontogenetic tendency at the submesoscale increases, which counters the enhanced horizontal diffusion by convection-induced turbulence. Downwelling/upwelling strengthens, and the peak SMS vertical buoyancy flux increases as surface cooling is increased. Furthermore, the production of FS energy by SMS velocity gradients (the interscale transfer term, which mediates forward energy cascade) is significant, up to half of the production by convection. Examination of potential vorticity reveals that surface cooling promotes higher levels of secondary symmetric instability (SI), which coexists with the persistent baroclinic instability. The forward interscale transfer is found to increase in the regions with SI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call