Abstract

A study regarding the interaction between two consecutive Taylor drops flowing in a heavier liquid in a vertical tube is reported. Under certain conditions, due to the wake of the leading drop, the trailing drop accelerates, leading to coalescence of the two drops. This study was developed using a numerical model based in the Volume of Fluid method in an axisymmetric geometry. The simulations reported in the present work had to fulfill two conditions: axisymmetry (due to the numerical model) and a high enough drop Reynolds number (which is related to the disturbances in the wake of an isolated drop, and thus to the tendency to drop interaction). Relevant dimensionless numbers are used to assess the effect of the acting forces. Detailed flow patterns and drop shapes are provided. Furthermore, the approaching velocity acquired by the trailing drop is analyzed and velocity profiles between the leading and the trailing drop are also reported. In general, the trailing drop shows an accelerating region, followed by a deceleration near the leading drop. The increase of Eotvos number promotes higher accelerations, while the increase in Morton number and viscosity ratio has the opposite effect. By comparison to literature gas-liquid studies, it was also found that interfacial forces promote the shape stability of the drops.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call