Abstract
We examine the effects of the nonionic triblock copolymer surfactant Pluronic P103 on three surfaces of different wettability relevant to chemical mechanical planarization (CMP). Two of the surfaces are low-k organosilicate glass (OSG) films, Coral and Black Diamond; the third is a silica surface. Atomic force microscopy (AFM) force curves were used to probe the forces over each surface in solutions of P103. Each surface was also examined in potassium sulfate solutions to investigate the effect of ionic strengths. The AFM force curves show that both P103 and potassium sulfate eliminate adhesive forces at sufficiently high concentrations. DLVO theory was used to fit the AFM approach curves in order to calculate estimated surface potentials. Interestingly, the force curves suggest that molecular orientation of the P103 is different on surfaces of different wettability. The P103 was found to adopt a flat conformation on the hydrophilic silica surface while more extended structures formed on the more hydrophobic Coral and Black Diamond surfaces. These results provide a molecular-level understanding to aid the development of CMP formulations that will provide greater control on dielectric removal rate and reduce the overall non-uniformity in film thickness across the wafer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.