Abstract
Thermal stabilization is a very time-consuming process from PAN fibers to carbon fibers and seriously affects the structure and properties of the final carbon fibers. In this study, the thermal stabilization of PAN fibers is accomplished through two steps, taking 12 k PAN fibers as an example. That is, firstly, the preliminary thermal stabilization is done by optimizing the temperature range (220–240 °C) to achieve the rapid establishment of the trapezoidal structure. Then, the completed thermal stabilization is done by holding at a lower temperature (240 °C) to refine the oxidized structure. Discussions focused on the establishment of the optimized temperature range in the preliminary thermal stabilization and the effect of insulating at different temperatures during the completed thermal stabilization on the development of the structure and properties of the carbon fibers. It was confirmed that the use of this process to accomplish thermal stabilization of PAN fibers reasonably reduced the process time and energy consumption for thermal stabilization and improved the mechanical properties of the final carbon fibers. Moreover, it is applicable to optimize the thermal stabilization temperature program for all commercially available PAN fibers with different tow specifications and properties without any additional conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.