Abstract

Humans routinely scan their environment for useful information using saccadic eye movements and/or coordinated movements of the eyes and other body segments such the head and the torso. Most previous eye movement studies were conducted with seated subject and showed that single saccades and sequences of saccades (e.g. double-step saccades) made to briefly flashed stimuli were equally accurate and precise. As one can easily appreciate, most gaze shifts performed daily by a given person are not produced from a seated position, but rather from a standing position either as subjects perform an action from an upright stance or as they walk from one place to another. In the experiments presented here, we developed a new dual-task paradigm in order to study the interaction between the gaze control system and the postural system. Healthy adults (n = 12) were required to both maintain balance and produce accurate single-step and double-step eye saccades from a standing position. Visually-induced changes in head sway were evoked using wide-field background stimuli that either moved in the mediolateral direction or in the anteroposterior direction. We found that, as in the seated condition, single- and double-step saccades were very precise and accurate when made from a standing position, but that a tighter control of head sway was necessary in the more complex double-step saccades condition for equivalent results to be obtained. Our perturbation results support the “common goal” hypothesis that state that if necessary, as was the case during the more complex oculomotor task, context-dependent modulations of the postural system can be triggered to reduced instability and therefore support the accomplishment of a suprapostural goal.

Highlights

  • In everyday life situations, context-dependent regulation of posture is often required to produce accurate goal-directed behaviors while standing

  • In this study we investigated the interaction between the oculomotor and postural systems

  • We varied the complexity of the oculomotor task and we investigated how the systems adapted to visually-induced postural perturbations

Read more

Summary

Introduction

Context-dependent regulation of posture is often required to produce accurate goal-directed behaviors while standing. Research on the control of posture during goal-directed eye movements in healthy adults has produced variable results and a consensus has yet to be reached. We report measurements of eye movement accuracy and modulations of head sway in standing human subjects as they performed oculomotor tasks of varying complexities that required either to maintain fixation on a stationary target, to perform single-step saccades or to generate sequences of double-step saccades. In many of the experiments, balance was challenged using visually-induced postural perturbations This new dual-task paradigm required to concomitantly maintain balance and to accurately fixate gaze targets

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.