Abstract

The crucial factor of laser welding is the laser energy conversion. For a better understanding of the process, the interaction process between the laser beam and keyhole wall was investigated by observing the keyhole wall evaporation during high-power fiber laser welding. The results show that the evaporation vapor, induced by the laser beam, discretely distributed on the keyhole wall. A tiny 'hollow' zone was observed at the spot center-action region on the FKW. The evaporation vapor induced by the spot center moved downward along the front keyhole wall (FKW) with a period of about 0.3~0.75 ms, which indicates that the keyhole formation is reminiscent of a periodical laser drilling process on the FKW. The evaporation vapor on the keyhole wall suggest the assumption that the laser energy coupling mode in the keyhole was multiple-reflection, and the keyhole depth was mainly determined by the drilling behavior induced by the first absorption on the FKW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call