Abstract

Abstract We investigated the star formation activities in the AFGL 333 region, which is in the vicinity of the W 4 expanding bubble, by conducting NH3 (1,1), (2,2), and (3,3) mapping observations with the 45 m Nobeyama Radio Telescope an angular resolution of 75″. The morphology of the NH3 (1,1) map shows a bow-shaped structure with the size of 2.0 × 0.6 pc as seen in the dust continuum. At the interface between the W 4 bubble and the dense NH3 cloud, the compact H ii region G134.2+0.8, associated with IRAS 02245+6115, is located. Interestingly, just at the north and south of G134.2+0.8 we found NH3 emission exhibiting large velocity widths of ∼2.8 km s−1, compared to 1.8 km s−1 at the other positions. As the possibility of mechanical energy injection through the activity of young stellar objects (YSOs) is low, we considered the origin of the large turbulent gas motion as an indication of interaction between the compact H ii region and the periphery of the dense molecular cloud. We also found expanding motion of the CO emission associated with G134.2+0.8. The overall structure of the AFGL 333-Ridge might have been formed by the expanding bubble of W 4. However, the small velocity widths observed to the west of IRAS 02245+6115, around the center of the dense molecular cloud, suggest that interaction with the compact H ii region is limited. Therefore the YSOs (dominantly Class 0/I) in the core of the AFGL 333-Ridge dense molecular cloud most likely formed in quiescent mode. As previously suggested for the large-scale star formation in the W 3 giant molecular cloud, our results show an apparent coexistence of induced and quiescent star formations in this region. It appears that star formation in the AFGL 333 region has proceeded without significant external triggers, but accompanying stellar feedback environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.