Abstract

ABSTRACTFluvial systems in uplifting terrain respond to tectonic, climatic, eustatic and local base‐level controls modified by specific local factors, such as river capture. The Rio Alias in southeast Spain is an ephemeral, transverse‐to‐structure fluvial system. The river drains two interconnected Neogene sedimentary basins, the Sorbas and Almeria basins, and crosses two major geological structures, the Sierras de Alhamilla/Cabrera and the Carboneras Fault Zone. Regional epeirogenic uplift resulted in sustained fluvial incision during the Quaternary, punctuated by major climatically driven periods of aggradation and dissection, which created a suite of five river terraces. The river terrace sequence was radically modified in the late Pleistocene by a major river capture (itself a response to regional tectonics), localized tectonic activity and eustatic base‐level change. The Rio Alias is defined by four reaches; within each the climatically‐generated, region‐wide, fluvial response was modified by tectonics, base‐level change or river capture to varying degrees. In the upper part of the basin (Lucainena reach), climate was the dominant control on river development, with limited modification of the sequence by uplift of the Sierra Alhamilla and local drainage reorganization by a local river capture. Downstream of the Sierra Alhamilla in the Polopus reach, the climatic signal is dominant, but its expression is radically modified by the response to a major river capture whereby the Alias system lost up to 70% of its pre‐capture drainage area. In the reach adjacent to the Carboneras Fault Zone (Argamason reach), modification of the terrace sequence by local tectonic activity and a resultant local base‐level fall led to a major local incisional event (propagating c. 3–4 km upstream from the area of tectonic disturbance). At the seaward end of the system (El Saltador reach) Quaternary sea‐level changes modified the patterns of erosion and incision and have resulted in steep incisional terrace profiles. The signals generated by regional tectonics and the Quaternary climate change can be identified throughout the basin but those generated by ongoing local tectonics, river capture and sea‐level change are spatially restricted and define the four reaches. The connectivity of the system from the headwaters to the coast decreased through time as incision progressed, resulting in changes in local coupling characteristics. Copyright © 2012 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call