Abstract

The Bacillus subtilis tyrS gene is a member of a group of gram-positive aminoacyl-tRNA synthetase and amino acid biosynthesis genes which are regulated by transcription antitermination. Each gene in the group is specifically induced by limitation for the appropriate amino acid. This response is mediated by interaction of the cognate tRNA with the mRNA leader region to promote formation of an antiterminator structure. The tRNA interacts with the leader by codon-anticodon pairing at a position designated the specifier sequence which is upstream of the antiterminator. In this study, an additional site of possible contact between the tRNA and the leader was identified through covariation of leader mRNA and tRNA sequences. Mutations in the acceptor end of tRNA(Tyr) could suppress mutations in the side bulge of the antiterminator, in a pattern consistent with base pairing. This base pairing may thereby directly affect the formation and/or function of the antiterminator. The discriminator position of the tRNA, an important identity determinant for a number of tRNAs, including tRNA(Tyr), was shown to act as a second specificity determinant for assuring response to the appropriate tRNA. Furthermore, overproduction of an unchargeable variant of tRNA(Tyr) resulted in antitermination in the absence of limitation for tyrosine, supporting the proposal that uncharged tRNA is the effector in this system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call