Abstract

ABSTRACTRecently, the security and stability of submarine pipelines have attracted much attention in ocean engineering. In this paper, pipelines with a streamlined contour (wedge, airfoil, double-ellipse, and arc-angle hexagon) are designed in hopes of defending against the impact of submarine landslides, and the computational fluid dynamics (CFD) approach is used to investigate the interaction between submarine landslides and streamlined pipelines. The results show that the peak interactional force is more representative of the hazard level of pipelines imposed by submarine landslides. It is also found that the streamlined pipelines possess a significant advantage in reducing the drag force and lift force of landslide–pipeline interaction with a maximum lessening percentage of 66.32 and 40.17%, compared with a conventional circular pipeline. In addition, the influence of applying streamlined pipelines to engineering is briefly discussed, and the empirical equation for estimating the drag force and lift force of streamlined pipelines induced by landslides is recommended based on the numerical test results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.