Abstract

Solvation properties of solutes in supercritical, medium density solvents have been analysed using hypernetted-chain theory with the emphasis on the solvent-mediated interaction between solute molecules. The solvent and solute molecules are Lennard-Jones particles, and the solute is present at infinite dilution. Also a pair of solute molecules separated by different distances has been considered using reference interaction site model theory. Mainly, solvents at two typical densities (1.09pc and 2.91pc; pc is the critical density) that are in medium and high density regions, respectively, are treated. The temperature is set at 1.04TC (Tc is the critical temperature). When the solute size is larger than the solvent size and the strength of the solute-solvent attractive interaction is greater than that of the solvent-solvent in the medium density region, the solvent structure confined between a pair of solute molecules is largely different from that near a single solute molecule. The confined solvent becomes denser and more stabilized as the distance between the solute molecules decreases, and an attractive interaction is induced between them. The interaction becomes even more attractive as the strength of the solute-solvent attractive interaction increases. The observations are qualitatively different from those in the high density region. Another high density region, which is well below the critical temperature, has been considered, but the behaviour observed is similar to that in the high density region above the critical temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call