Abstract

The solubility mechanism of silica in a fluoride-chloride melt has been determined in situ using Raman spectroscopy. The spectroscopy data revealed that the silica solubility process involved Si-O bond breakage and Si-F bond formation. The process results in the formation of silicate complexes, fluorine-bearing silicate complexes, and silicon tetrafluoride in the melt. Mass spectrometry of the vapor phase over the KF-KCl-K2SiF6 and KF-KCl-K2SiF6-SiO2 melts and differential scanning calorimetry coupled with thermal gravimetric analysis of these melts were performed to verify the silica solubility mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.