Abstract

Human endometrium-derived mesenchymal stem cells (hMESCs) enter the premature senescence under sublethal oxidative stress, however underlying mechanism remains unknown. Here, we showed that exogenous H2O2 induces a rapid phosphorylation and co-localization of ATM, H2A.X, 53BP1 leading to DNA damage response (DDR) activation. DDR was accompanied with nuclear translocation of p-p53 followed by up-regulation of p21Waf1 and the permanent hypophosphorylation of pRb. Additionally, the increased p38MAPK/MAPKAPK-2 activation persisted in H2O2-treated cells. We suggest that both p53/p21/pRb and p38MAPK/MAPKAPK-2 pathways are responsible for establishing an irreversible cell cycle arrest that is typical of senescence. The process of further stabilization of senescence required prolonged DDR signaling activation that was provided by the permanent ROS production which in turn was regulated by both p38MAPK and the increased functional mitochondria. To reverse senescence, the pharmacological inhibition of p38MAPK was performed. Cell treatment with SB203580 was sufficient to recover partially senescence phenotype, to block the ROS elevation, to decrease the mitochondrial function, and finally to rescue proliferation. Thus, suppression of the p38MAPK pathway resulted in a partial prevention of H2O2-induced senescence of hMESCs. The current study is the first to reveal the molecular mechanism of the premature senescence of hMESCs in response to oxidative stress.

Highlights

  • Cellular senescence defined as an irreversible proliferation arrest promotes age-related decline in mammalian tissue homeostasis [1]

  • We have provided the reliable evidence that Human endometrium‐derived mesenchymal stem cells (hMESCs) undergo the premature senescence in response to the sublethal concentration of H2O2 [36]

  • H2O2 treatment of cells led to a rapid elevation of intracellular reactive oxygen species (ROS) levels, peaking at 15 min and returning progressively to the baseline by 30 min in majority of cells, indicating that exogenous H2O2 is almost completely utilized by cells during 1 h treatment

Read more

Summary

Introduction

Cellular senescence defined as an irreversible proliferation arrest promotes age-related decline in mammalian tissue homeostasis [1]. Similar to other types of normally proliferating cells that are characterized by a finite lifespan (Hayflick limit) human mesenchymal stem cells undergo the replicative senescence after a fixed number of cell divisions [5]. The recent findings have revealed that human mesenchymal stem cells may respond to a variety of subcytotoxic stresses (UV-, γ-radiation, H2O2, histone deacetylase inhibitors, etc.) by induction of premature senescence [6, 7, 8]. According to the free-radical theory of aging, reactive oxygen species (ROS), including the oxygen singlet, the superoxide anion (O2.-), the hydroxyl radical (OH.) and hydrogen peroxide (H2O2) might be the candidates, which are responsible for cellular senescence. Being membrane permeable and long-lived molecule, H2O2 can directly affect the www.impactaging.com

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call