Abstract

BackgroundThe liver plays an important role in production and metabolism of homocysteine (Hcy), which has been reported to be involved in liver injury. In our previous work, we confirm that Hcy can induce liver injury by activating endoplasmic reticulum (ER) stress. However, the underlying mechanisms remain largely unknown.ResultsIn present study, we established the Hcy-induced liver injury model by feeding cbs+/− mice with high methionine diet, and found that a considerable mass of disordered arrangement of hepatocytes and enlarged space between hepatocytes were frequently occurred in the liver of cbs+/− mice, accompanied with elevated expression levels of apoptosis-related proteins. In addition, Hcy could activate ER stress both in cbs+/− mice and hepatocytes. Mechanistically, Hcy promoted the expression levels of proteasome 26S subunit non-ATPase 10 (PSMD10) in hepatocytes; and the expression of ER stress indicators and apoptosis-associated proteins were significantly suppressed when PSMD10 was silenced in hepatocytes under Hcy treatment. Moreover, bioinformatics analysis and luciferase reporter assay demonstrated that PSMD10 was a target gene of miR-212-5p. Consistently, miR-212-5p overexpression could inhibit ER stress-mediated apoptosis of hepatocytes under Hcy treatment. With the help of co-immunoprecipitation assay, we identified that the interaction between PSMD10 and GRP78 accelerated ER stress-mediated hepatic apoptosis induced by Hcy.ConclusionsOur findings indicate that miR-212-5p directly targets PSMD10 and subsequently activates ER stress to promote Hcy-induced apoptosis of hepatocytes. We propose that endogenous PSMD10 physically interacts with GRP78 to regulate ER stress. Our study may provide the therapeutic target for the liver injury induced by Hcy.

Highlights

  • The liver plays an important role in production and metabolism of homocysteine (Hcy), which has been reported to be involved in liver injury

  • Homocysteine aggravates liver injury by promoting hepatocytes apoptosis To get a better insight into the possible mechanism of liver injury induced by Hcy, cbs+/− mice were fed with high methionine diet (HMD) as described in experimental procedures

  • The serum concentrations of indicators for liver injury, such as aspartate aminotransferase (AST) and alanine transaminase (ALT), were increased in cbs+/− mice, which were positively correlated with the levels of Hcy (Fig. 1B, C)

Read more

Summary

Introduction

The liver plays an important role in production and metabolism of homocysteine (Hcy), which has been reported to be involved in liver injury. We confirm that Hcy can induce liver injury by activating endoplasmic reticulum (ER) stress. Results: In present study, we established the Hcy-induced liver injury model by feeding cbs+/− mice with high methionine diet, and found that a considerable mass of disordered arrangement of hepatocytes and enlarged space between hepatocytes were frequently occurred in the liver of cbs+/− mice, accompanied with elevated expression levels of apoptosis-related proteins. With the help of co-immunoprecipitation assay, we identified that the interaction between PSMD10 and GRP78 accelerated ER stress-mediated hepatic apoptosis induced by Hcy. Homocysteine (Hcy) is a non-essential sulfhydrylcontaining amino acid that is derived from methionine metabolism. Exploring the molecular mechanisms of Hcy-induced hepatocyte apoptosis is crucial for the treatment of liver disease. It is generally accepted that the unfolded protein reaction (UPR) signaling pathway plays an independent role in ER stress, of which may present opportunities for targeted therapies [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call