Abstract

In this paper, we propose a diffusive prey-predator system with mutually interfering predator (Crowley–Martin functional response) and prey reserve. In particular, we develop and analyze both spatially homogeneous model based on ordinary differential equations and reaction-diffusion model. We mainly investigate the global existence and boundedness of positive solution, stability properties of homogeneous steady state, non-existence of non-constant positive steady state, conditions for Turing instability and Hopf bifurcation of the diffusive system analytically. Conventional stability properties of the non-spatial counterpart of the system are also studied. The analysis ensures that the prey reserve leaves stabilizing effect on the stability of temporal system. The prey reserve and diffusive parameters leave parallel impact on the stability of the spatio-temporal system. Furthermore, we illustrate the spatial patterns via numerical simulations, which show that the model dynamics exhibits diffusion controlled pattern formation by different interesting patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.