Abstract

The adsorption properties (adsorbed amount, kinetics, and reversibility) of poly(vinylimidazole) (PVI) and sodium dodecyl sulfate from PVI/SDS mixed solutions on negatively charged silica substrates were studied at pH 9 using reflectometry and compared to that measured on colloidal silica by the solution depletion method. In this paper, we will try to gain insight into the effect of PVI/SDS complex composition on the adsorption characteristics of the complex and particularly on the kinetics of the complex adsorption and its consequence on the adsorption reversibility. The properties of the complex in solution were characterized by means of potentiometric titration at a constant pH, binding isotherm, and surface tension measurements. On the basis of the experimental results the prevailing mechanism of the SDS/PVI interaction and the properties of the PVI/SDS complex were evaluated. Both the PVI/SDS complex uptake and the kinetics of the adsorption decreased with the amount of SDS bound to PVI. At low PVI/SDS binding ([SDS] 0<critical aggregation concentration CAC), the complex adsorption is transport limited while at high binding ([SDS] 0>CAC) the incoming complex experiences a blocking barrier of an electrostatic nature. This barrier has been confirmed by reversibility measurement, and the respective roles of the complex structure and charge were assessed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.