Abstract

BackgroundPasteurella multocida B:2 causes bovine haemorrhagic septicaemia (HS), leading to rapid fatalities in cattle and buffaloes. An attenuated derivative of P. multocida B:2 GDH7, was previously constructed through mutation of the gdhA gene and proved to be an effective live attenuated vaccine for HS. Currently, only two potential live attenuated vaccine candidates for HS are being reported; P. multocida B:2 GDH7 and P. multocida B:2 JRMT12. This study primarily aims to investigate the potential of P. multocida B:2 GDH7 strain as a delivery vehicle for DNA vaccine for future multivalent applications.ResultsAn investigation on the adherence, invasion and intracellular survival of bacterial strains within the bovine aortic endothelial cell line (BAEC) were carried out. The potential vaccine strain, P. multocida B:2 GDH7, was significantly better (p ≤ 0.05) at adhering to and invading BAEC compared to its parent strain and to P. multocida B:2 JRMT12 and survived intracellularly 7 h post treatment, with a steady decline over time. A dual reporter plasmid, pSRGM, which enabled tracking of bacterial movement from the extracellular environment into the intracellular compartment of the mammalian cells, was subsequently transformed into P. multocida B:2 GDH7. Intracellular trafficking of the vaccine strain, P. multocida B:2 GDH7 was subsequently visualized by tracking the reporter proteins via confocal laser scanning microscopy (CLSM).ConclusionsThe ability of P. multocida B:2 GDH7 to model bactofection represents a possibility for this vaccine strain to be used as a delivery vehicle for DNA vaccine for future multivalent protection in cattle and buffaloes.

Highlights

  • Pasteurella multocida B:2 causes bovine haemorrhagic septicaemia (HS), leading to rapid fatalities in cattle and buffaloes

  • It is crucial to understand the bacterial pathogenesis during progression of this disease towards the fate of the plasmid carried by the bacterium after it enters into mammalian cells to further strengthen the ability of P. multocida B:2 GDH7 as a vaccine

  • Bacterial strains and growth condition Bacterial strains used in this study were: P.multocida B:2 wild-type, a local isolate from a previous outbreak of haemorrhagic septicaemia in Malaysian cattle, P.multocida B:2 GDH7, ΔgdhA derivative P.multocida B:2 wildtype and P. multocida B:2 JRMT12, an ΔaroA mutant of strain P. multocida B:2 85,020 from an outbreak in Sri Lanka

Read more

Summary

Introduction

Pasteurella multocida B:2 causes bovine haemorrhagic septicaemia (HS), leading to rapid fatalities in cattle and buffaloes. The interaction rate of both attenuated vaccine strains, P. multocida B:2 GDH7 and P. multocida B:2 JRMT12 towards bovine aortic endothelial cells (BAEC) was assessed. The ability and efficiency of P. multocida B:2 GDH7 to persist in the intracellular environment of the host cells and to transfer plasmid DNA intracellularly was investigated. To assess this interaction, a dual-reporter plasmid that expresses in both prokaryotic and eukaryotic cells was used. It is crucial to understand the bacterial pathogenesis during progression of this disease towards the fate of the plasmid carried by the bacterium after it enters into mammalian cells to further strengthen the ability of P. multocida B:2 GDH7 as a vaccine

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call