Abstract

A blood cell type termed crystal cell in Drosophila functions in clotting and wound healing and requires Notch for specification and maintenance. We report that crystal cells express elevated levels of Sima protein orthologous to mammalian hypoxia-inducible factor-α (Hif-α) even under conditions of normal oxygen availability. In these platelet-like crystal cells, Sima activates full-length Notch receptor signaling via a noncanonical, ligand-independent mechanism that promotes hemocyte survival during both normal hematopoietic development and hypoxic stress. This interaction initiates in early endosomes, is independent of Hif-β (Τangο in Drosophila), and does not activate hypoxia response targets. Studies in vertebrate myeloid cells have shown a similar up-regulation of Hif-α protein in well-oxygenated environments. This study provides a mechanistic paradigm for Hif-α/Notch interaction that may be conserved in mammals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.