Abstract

Primates excel at categorization, a cognitive process for assigning stimuli into behaviorally relevant groups. Categories are encoded in multiple brain areas and tasks, yet it remains unclear how neural encoding and dynamics support cognitive tasks with different demands. We recorded from parietal cortex during flexible switching between categorization tasks with distinct cognitive and motor demands and also studied recurrent neural networks (RNNs) trained on the same tasks. In the one-interval categorization task (OIC), monkeys rapidly reported their decisions with a saccade. In the delayed match-to-category (DMC) task, monkeys decided whether sequentially presented stimuli were categorical matches. Neuronal category encoding generalized across tasks, but categorical encoding was more binary-like in the DMC task and more graded in the OIC task. Furthermore, analysis of trained RNNs supports the hypothesis that binary-like encoding in DMC arises through compression of graded feature encoding by attractor dynamics underlying stimulus maintenance and/or comparison in working memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.