Abstract

Density functional calculations have been performed to investigate the dependence of methanol interaction with the side walls of single-walled carbon nanotubes (SWCNTs) on the nanotube's type, curvature and chirality. The author's results show that methanol prefers to be physically adsorbed on semiconducting CNTs in comparison with the metallic one. It was found that the binding energy of methanol is increased for adsorption on larger-diameter nanotubes. Furthermore, we find that when a methanol molecule was adsorbed on higher chiral angle nanotubes the binding energy was increased. The study of the electronic structures and Mulliken analysis indicate that the methanol and CNT are interacting rather weakly, consistent with recent experimental observation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call