Abstract

AbstractMassive stars drive strong winds that impact the surrounding interstellar medium, producing parsec-scale bubbles for isolated stars and superbubbles around young clusters. These bubbles can be observed across the electromagnetic spectrum, both the wind itself and the swept up interstellar gas. Runaway massive stars produce bow shocks that strongly compresses interstellar gas, producing bright infrared, optical and radio nebulae. With the detection of non-thermal radio emission from bow shocks, particle acceleration can now also be investigated. I review research on wind bubbles and bow shocks around massive stars, highlighting recent advances in infrared, radio and X-ray observations, and progress in multidimensional simulations of these nebulae. These advances enable quantitative comparisons between theory and observations and allow to test the importance of some physical processes such as thermal conduction and Kelvin-Helmholtz instability in shaping nebulae and in constraining the energetics of stellar-wind feedback to the interstellar medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call