Abstract

The hierarchical and heterogeneous structures and the interactions between biomass components within cell walls are closely related to the pyrolysis characteristics. In this work, thermogravimetric analysis (TGA) and pyrolysis kinetics analysis were used to investigate the pyrolysis characteristics of windmill palm (Trachycarpus fortunei (Hook.) H. Wendl.) culm and silk after delignification. The results demonstrate cellulose pyrolysis temperature of silk is much higher than that of culm, attributed to the higher lignin content of the former. After delignification, the cellulose pyrolysis temperature of silk decreased by 48 °C, which is much higher than that of culm by 18 °C, suggesting a strong interaction between lignin and cellulose during the pyrolysis process. Futhermore, pyrolysis kinetics analysis also found that the frequency factor of slik and culm increased by 129 % and 26 %, respectively, attributed to the disappearance of the carbon layer formed by lignin pyrolysis process. And, differ in lignin content is responsible for the discrepancy of frequency factor increase. In conclusion, we propose a mechanism model for lignin hindering cellulose pyrolysis, which is of great significance for understanding the pyrolysis interactions of biomass components in complex supramolecular cell wall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call