Abstract

Two characteristics that distinguish canopy sublayer (CSL) turbulence from its atmospheric surface layer (ASL) counterpart are short‐circuiting of the energy cascade and formation of Kelvin‐Helmholtz (KH) vortices near the canopy top. These two phenomena lead to nonlinear and poorly understood interactions between small and large scale eddies within the CSL absent from classical ASL turbulence. Using velocity scaling arguments and nonlinear time series analysis, we explore the degree of interaction between large and small scales in a canopy composed of densely arrayed cylinders. We found that such interactions are dynamically divided into four regions depending on the distance from the wall, and posses various degrees of nonlinearity and interaction strengths. The broader impact to CSL Large Eddy Simulations (LES) and low‐dimensional dynamical systems (LDDS) models of coherent eddies is briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.