Abstract

The weak aqueous interaction between the protein lactate dehydrogenase (LDH) and the nonionic surfactant Tween 80 has been investigated, because weak protein-amphiphile interactions are of significant importance in pharmaceutical formulations, but are experimentally hard to determine. The system LDH/sodium dodecyl sulphate (SDS) was used as reference because SDS, by its strong protein binding, denatures LDH completely. Fluorescence spectroscopy with pyrene and 1,3-bis(lphenyl)propane (P3P) as probes, intrinsic protein fluorescence and NMR spectroscopy have been used. The fluorescence probe pyrene monitors a weak Tween-LDH interaction, detectable below the critical micelle concentration of ordinary Tween micelles. The microviscosity probe P3P shows a surfactant-induced denaturation in the case of LDH/SDS but not in the case of LDH/Tween 80. Intrinsic LDH fluorescence verifies this behavior. Pulsed-gradient spin-echo NMR was also used to verify the weak LDH-Tween 80 interaction. CONCLUSIONS. A weak interaction between LDH and Tween 80 occurs at hydrophobic zones of the protein, but it is not strong enough to denature LDH. The experimental outline used here provides a useful approach for mapping the very weak protein-amphiphile interactions often present in pharmaceutical formulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.