Abstract
The adsorptions of a glycine molecule as well as dehydrogenated radicals on the side walls of both intrinsic and boron-doped (B-doped) single-walled (8,0) carbon nanotubes (SWCNTs) were investigated by a density functional theory. A glycine molecule tends to physically adsorb on intrinsic SWCNTs yet chemically adsorb on B-doped SWCNTs as a result of a somewhat chemical bond between the electron-rich nitrogen atom of the glycine molecule and the electron-scarce boron atom of the doped SWCNT. Opposite to the previous report (J. Phys. Chem. B 2006, 110, 6048-6050), it is found in the present study that both the N-centered and C-centered glycine radicals can form quite stable complexes with intrinsic as well as B-doped (8,0) SWCNTs. When the B-doped SWCNT interacts with glycine radicals, although there is a competition between B and the neighbor C in the nanotube axis direction, glycine radicals preferentially bind to the C site. The encapsulations of a glycine molecule into SWCNTs with various diameters are also discussed. We find that the encapsulation process is endothermic for (8,0) and (9,0) SWCNTs, while it is exothermic for (10,0) SWCNTs, indicating that the critical diameter of the zigzag SWCNT for the encapsulation is 7.83 A, the diameter of (10,0).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.