Abstract
Metazoan replication-dependent histone mRNAs are the only nonpolyadenylated cellular mRNAs. Formation of the histone mRNA 3' end requires the U7 snRNP, which contains Lsm10 and Lsm11, and FLASH, a processing factor that binds Lsm11. Here, we identify sequences in Drosophila FLASH (dFLASH) that bind Drosophila Lsm11 (dLsm11), allow localization of dFLASH to the nucleus and histone locus body (HLB), and participate in histone pre-mRNA processing in vivo. Amino acids 105-154 of dFLASH bind to amino acids 1-78 of dLsm11. A two-amino acid mutation of dLsm11 that prevents dFLASH binding but does not affect localization of U7 snRNP to the HLB cannot rescue the lethality or histone pre-mRNA processing defects resulting from an Lsm11 null mutation. The last 45 amino acids of FLASH are required for efficient localization to the HLB in Drosophila cultured cells. Removing the first 64 amino acids of FLASH has no effect on processing in vivo. Removal of 13 additional amino acids of dFLASH results in a dominant negative protein that binds Lsm11 but inhibits processing of histone pre-mRNA in vivo. Inhibition requires the Lsm11 binding site, suggesting that the mutant dFLASH protein sequesters the U7 snRNP in an inactive complex and that residues between 64 and 77 of dFLASH interact with a factor required for processing. Together, these studies demonstrate that direct interaction between dFLASH and dLsm11 is essential for histone pre-mRNA processing in vivo and for proper development and viability in flies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.