Abstract
In this research, the structure, quantum and NQR (Nuclear quadrupole resonance)parameters of F2 gas adsorption on the pristine and 3C-doped (4,4) armchair models of boron phosphide nanotubes (BPNTs) have been investigated in the framework of density functional theory. For this purpose, at the first step, four models for F2 adsorption on the inner and outer surfaces of pristine and 3Cdoped BPNTS are considered and then all structures are optimized by using Gaussian 03 program package. The optimized structures are used to calculate the quantum and NQR parameters. The calculated results reveal that the adsorption energy of pristine and 3Cdoped models of BPNTs are exothermic and adsorption process is a physisorption process due to the weak Van der Waals interaction. The substitution of three carbons with three B atoms of nanotube decreases significantly the adsorption energies. The F2 adsorption and 3C-doping decrease the band gap, global hardness, and ionization potential of the pristine BPNTs. The calculated NQR parameters of all the models show that CQ and ηQ values of the first layer are larger than those of the other layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.