Abstract

We are concerned by a special mechanism that can explain the formation of freak waves. We study numerically the long time evolution of a surface gravity wave packet, comparing a fully nonlinear model with Schrödinger-like simplified equations. We observe that the interaction between envelope solitons generates large waves. This is predicted by both models. The fully nonlinear simulations show a qualitative behaviour that differs significantly from the ones preticted by Schrödinger models, however. Indeed, the occurence of freak waves is much more frequent with the fully nonlinear model. This is a consequence of the long-time interaction between envelope solitons, which, in the fully nonlinear model, is totally different from the Schrödinger scenario. The fundamental differences appear for times when the simplified equations cease to be valid. Possible statistical models, based on the latter, should hence under-estimate the probability of freak wave formation. To cite this article: D. Clamond, J. Grue, C. R. Mecanique 330 (2002) 575–580.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.