Abstract

In this article, we have investigated the interaction between two poly(benzyl ether) dendrons directly by single-molecule force spectroscopy. For this purpose, one dendron was immobilized on an AFM tip through a poly(ethylene glycol) (PEG) spacer, and the other dendron was anchored on a gold substrate as a self-assembled monolayer. Two dendrons approached and then interacted with each other when the AFM tip and the substrate moved close together. The rupture force between dendrons was measured while the AFM tip and the substrate separated. PEG as a flexible spacer can function as a length window for recognizing the force signals and avoiding the disturbance of the interaction between the AFM tip and the substrate. The interaction between two first-generation dendrons is measured to be about 224 pN at a force loading rate of 40 nN/s. The interaction between second- and first-generation dendrons rises to 315 pN at the same loading rate. Such interactions depend on the force loading rate in the range of several to hundreds of nanonewtons per second, indicating that the rupture between dendrons is a dynamic process. The study of the interaction between surface-bound dendrons of different generations provides a model system for understanding the surface adhesion of molecules with multiple branches. In addition, this multiple-branch molecule may be used to mimic the sticky feet of geckos as a man-made adhesive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call