Abstract
Soil fauna play a key role in litter decomposition as they influence the litter mass loss rate in terrestrial ecosystems. However, the interaction between decomposing litter and soil fauna has not been adequately addressed. We examine the interaction between different types of decomposing litter and soil fauna on the Betula ermanii Cham. (BE) forest floor of the Changbai Mountains, China, by measuring the mass loss of six litter species groups using litterbags with two sizes of mesh (4 mm and 0.01 mm) during a yearlong experiment. Soil fauna were identified at the order level. We found that soil fauna have a limited effect on litter mass loss at the initial stage of the experiment. Its positive effect became apparent at month 12 of the experiment. After 1 year, soil fauna increased the litter mass loss rate of the high-quality litter of Parasenecio komarovianus (Pojark.) Y.L. Chen (PK) by 7.02% and of the low-quality litter of Rhododendron aureum Georgi (RA) by 25.26%. BE + PK litter was associated with a significantly higher abundance of soil fauna at months 8 and 10 of the experiment and also with a significantly higher richness of soil fauna at month 10 of the experiment. At the end of the experiment, however, the Shannon–Wiener diversity index of soil fauna was not necessarily higher in mixed-species litter. Litter mixing did promote the abundance, richness, and diversity of soil fauna during the warm season in the high-quality litter substrate of BE + PK. Our results illustrate that the impact of soil fauna on the litter mass loss of both single- and mixed-species litterbags ranges from a limited impact to a positive impact as litter mass loss advances. The soil fauna contribute more to the litter mass loss of the low-quality litter with higher C to N ratios than to those with a low C to N ratio. The promoting effect of litter mixing on the soil faunal community composition is only short term and is dependent on substrate quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.