Abstract

Protein–protein interactions between cytochrome P450 (P450) and other drug-metabolizing enzymes were studied by affinity chromatography using CYP1A1-, glycine-, and bovine serum albumin (BSA)-conjugated Sepharose 4B columns. Sodium cholate-solubilized microsomes from phenobarbital-treated rat liver were applied to the columns and the material eluted with buffer containing NaCl was analyzed by immunoblotting. Microsomal epoxide hydrolase (mEH) and UDP-glucuronosyltransferases (UGTs), as well as NADPH–P450 reductase, were efficiently trapped by the CYP1A1 column. Glycine and BSA columns exhibited no ability to retain these proteins. Protein disulfide isomerase and calnexin, non-drug-metabolizing enzymes expressed in the endoplasmic reticulum, were unable to associate with the CYP1A1 column. These results suggest that CYP1A1 interacts with mEH and UGT to facilitate a series of multistep drug metabolic conversions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.