Abstract

Functional transition of glyoxysomes to leaf peroxisomes is observed in greening cotyledons. Glyoxysomal proteins are rapidly degraded and leaf-peroxisomal proteins are transported into peroxisomes after cotyledons are exposed to light, but the molecular mechanisms underlying these processes remain unclear. We recently discovered that two degradation pathways are involved in the functional transition of peroxisomes using Arabidopsis thaliana. Lon protease 2 (LON2) is responsible for the degradation of glyoxysomal proteins inside peroxisomes, and, in parallel, autophagy eliminates damaged or obsolete peroxisomes. A double mutant defective in both the LON2- and autophagy-dependent degradation pathways accumulated glyoxysomal proteins after the cotyledons became green. Our study also demonstrated that the LON2- and autophagy-dependent pathways are interdependent, with the chaperone function of LON2 suppressing autophagic peroxisome degradation. Moreover, the peptidase domain of LON2 interferes with the suppression of autophagy, indicating that autophagy is regulated by intramolecular modulation between the proteolysis and chaperone functions of LON2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.