Abstract

The interaction between cetyltrimethylammonium bromide (CTAB) and β-cyclodextrin (β-CD) was studied via surface tension and dilational viscoelasticity methods. The effect of sodium bromide and sodium chloride on the interaction between CTAB and β-CD were studied as well. The surface tension isotherms provided a series of parameters, including apparent critical micelle concentration (cmc*), surface tension at the cmc* (γcmc), stoichiometry of the complex (R), and the efficiency of adsorption (pC 20 ). The addition of NaBr and NaCl decreases the cmc* of CTAB/β-CD solution. CTAB molecules enter the cavities of β-CD molecules thus formed both 1:1 and 1:2 inclusion complexes. From the change of γcmc, it can be seen that the CTAB/β-CD complexes (1:1) act as short-chain alcohol, which decrease γcmc, but the depression of cmc* is too small to be detected. R first decreases then increases as a function of NaBr and NaCl. Compared to NaCl, NaBr increases R more efficiently. The presence of NaBr and NaCl increases pC 20 of CTAB/β-CD solution. The results obtained from the dilational viscoelasticity measurements at low dilational frequencies (0.005–0.1 Hz) reveal that the dilational modulus passes through a maxium value with increasing concentration of β-CD at a given concentration of CTAB. The addition of both NaBr and NaCl decreases the dilational modulus of a given concentration CTAB/β-CD solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call