Abstract

The properties of functionalized single-walled carbon nanotube (f-SWCNT) supernatant samples obtained through steps of acid oxidation–centrifugation–decantation were characterized by spectroscopic tools. Fourier transform IR spectroscopy provided evidence for the chemical and structural variations generated on the f-SWCNTs within each supernatant sample. The results from UV-visible near-IR spectroscopy revealed that the density difference of the carbonaceous impurity with functional groups on the f-SWCNTs contributed to the attenuation of electrical conductivity. In the Raman results, the shift of frequency in the radial breathing mode (RBM) was associated with an increase in diameter of the f-SWCNTs and a decrease in RBM intensity was attributed to the depletion of valence band electrons. The redshift of the tangential mode indicates the reduction in the bandgaps of the f-SWCNTs by the decrease in carbonaceous impurity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.