Abstract

To clarify the mechanisms of action of antiepileptic drugs (AEDs), carbamazepine (CBZ) and zonisamide (ZNS), on exocytosis mechanisms, the present study determined the concentration-dependent action of CBZ and ZNS, as well as the interaction between these AEDs and voltage-sensitive Ca 2+ channel (VSCC) activity on basal, Ca 2+- and K +-evoked acetylcholine (ACh) release in frontal cortex of freely moving rat using in vivo microdialysis. Perfusion with therapeutic-relevant concentrations of CBZ and ZNS increased basal ACh release, which was regulated by N-type VSCC predominantly and P-type VSCC weakly, whereas supratherapeutic-relevant concentrations of these AEDs reduced this release. The 3.4 mM Ca 2+-evoked release, which was regulated by N-type VSCC selectively, but not by P-type VSCC, was increased by therapeutic-relevant concentrations of CBZ and ZNS, whereas this release was reduced by supratherapeutic-relevant concentrations of them. The 50 mM K +-evoked release, which was regulated by P-type VSCC predominantly and N-type VSCC weakly, was decreased by CBZ and ZNS, in a concentration-dependent manner. These findings indicate that the interplay between enhancement of basal ACh release and reduction of depolarization-related ACh release in the frontal cortex are at least partially involved in a common mechanism of antiepileptic action between CBZ and ZNS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.