Abstract

Antimicrobial peptides (AMPs) offer advantages over conventional antibiotics; for example, bacteria develop more resistance to small-molecule antibiotics than to AMPs. The interaction of the AMPs with the lipopolysaccharide (LPS) layer of the Gram-negative bacteria cell envelope is not well understood. A MARTINI model was constructed of a Gram-negative bacterial outer membrane interacting with the AMP Magainin 2. In a 20 μs molecular dynamics (MD) simulation, the AMP diffused to the LPS layer of the cell envelope and remained there, suggesting interactions between the Magainin 2 and the LPS layer, causing the AMP to concentrate at that position. The free energy profile for the insertion of the Magainin 2 into the membrane was also calculated using umbrella sampling, which showed that the AMP positioned such that the cationic side chains of the AMP coordinated to the negatively charged phosphate groups of the LPS layer. These simulations indicate that the AMP Magainin 2 partition into the LPS layer of a bacterial membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.