Abstract

A solution is presented to the two-dimensional problem of a rigid indenter sliding with friction on a half plane containing a near-surface imperfection in the form of a circular void or rigid inclusion. The complex variable formulation of Muskhelishivili is used to reduce the problem to a Fredholm integral equation of the second kind. This integral equation is solved numerically thus enabling the numerical calculation of the stress field. The behavior of the stress field is depicted in plots of the contact stress distribution and the subsurface maximum shear stress field. Results are presented showing location and size effects in the case of an inclusion, and finally, comparisons are made between the disturbances due to inclusions and voids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call