Abstract

This study investigated the relation between 17β-estradiol (E2) degradation and nitrification in synthetic mariculture wastewater by ammonia oxidizing bacterium Nitrosomonas europaea and moving bed biofilm reactor (MBBR). Batch experiments showed that E2 degradation by N. europaea in wastewater followed zero-order reaction kinetics (r2 = 0.944, 4.07 μg/ L h−1) when ammonia presented. Nitrite yield in N. europaea inoculation decreased by 77.8% exposed to 1 mg/L E2. The inhibitory impact on ammonia oxidation was enhanced with increasing E2 dosage from 50 ng/L to 1 mg/L. Notably, E2 as low as 50 ng/L still had significant interference with nitrite production, bacterial density and ammonia monooxygenase (AMO) activity of N. europaea. Still, the following continuous 68-day degradation test revealed that 84.5%–98.7% E2 could be removed by a bench-scale MBBR. Whereas, ammonia removal remarkably decreased from 94.7% ± 2.1% to 85.6% ± 2.1% (p < .05) along with the enhanced E2 removal (from 84.5% ± 2.0% to 98.7% ± 0.4%, p < .05) when inlet E2 increased from 10 μg/L to 1 mg/L, indicating the great role of heterotrophs in E2 degradation. In contrast, nitrite oxidation was not affected upon E2 exposure irrespective of E2 concentrations. In summary, nitrification was effective in removing E2, while E2 interfered with ammoxidation process, but this interference was negligible at the reactor level given the low level of E2 in practical field conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call