Abstract

Gene-based transcriptome analysis, such as differential expression analysis, can identify the key factors causing disease production, cell differentiation and other biological processes. However, this is not enough because basic life activities are mainly driven by the interactions between genes. Although there have been already many differential network inference methods for identifying the differential gene interactions, currently, most studies still only use the information of nodes in the network for downstream analyses. To investigate the insight into differential gene interactions, we should perform interaction-based transcriptome analysis (IBTA) instead of gene-based analysis after obtaining the differential networks. In this paper, we illustrated a workflow of IBTA by developing a Co-hub Differential Network inference (CDN) algorithm, and a novel interaction-based metric, pivot APC2. We confirmed the superior performance of CDN through simulation experiments compared with other popular differential network inference algorithms. Furthermore, three case studies are given using colorectal cancer, COVID-19 and triple-negative breast cancer datasets to demonstrate the ability of our interaction-based analytical process to uncover causative mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.