Abstract

In this study, we experimentally investigated the effect of charged particles generated from an alternating current glow discharge in liquids and the ability of these particles to synthesize silver nanoparticles. The measurement of the pH and electrical conductivity in liquids was performed to study the interface reactions and transfer of species from plasmas to liquids. Solutions of sodium hydroxide, de-ionized water, sodium nitrate, and silver nitrate were used in this study. We determined that the pH of de-ionized water and sodium hydroxide solutions was reduced to 4.0 during the discharge. However, the pH of nitrate salts evolved in two opposite stages, with an initial reduction within 3 min from the start of the discharge and a subsequent increase to alkaline values. The results also showed that spherical silver nanoparticles were generated in the silver nitrate solutions under the discharge. These results indicate that alternating current glow discharge generates both positive ions and free electrons when in contact with a liquid, leading to complex chemical transformations. This suggests that the proposed approach can be used for noble nanoparticle synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.