Abstract

Microplastics (MPs) are recognized as vectors for the transport of organic contaminants in aquatic environments in addition to their own adverse effects on aquatic organisms. Per- and polyfluoroalkyl substances (PFASs) are widely present in aquatic environments due to their widespread applications, and thus coexist with MPs. Therefore, we focus on the interaction of MPs and PFASs and related combined toxicity in aquatic environments in this work. The adsorption of PFASs on MPs is critically reviewed, and new mechanisms such as halogen bonding, π-π interaction, cation-π interactions, and micelle formation are proposed. Moreover, the effect of MPs on the transport and transformation of PFASs in aquatic environments is discussed. Based on four typical aquatic organisms (shellfish, Daphnia, algae, and fish), the toxicity of MPs and/or PFASs at the organismal or molecular levels is also evaluated and summarized. Finally, challenges and research perspectives are proposed, and the roles of the shapes and aging process of MPs on PFAS biogeochemical processes and toxicity, especially on PFAS substitutes, are recommended for further investigation. This review provides a better understanding of the interactions and toxic effects of coexisting MPs and PFASs in aquatic environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call