Abstract
Self-interstitial atom (SIA) type dislocation loop is one of the possible candidates of the so-called matrix damage that causes hardening and embrittlement of blanket structural materials of fusion reactors and/or pressure vessel materials of light water reactors. We present in this paper molecular dynamics computer simulation results on the interactions between an edge dislocation and a SIA loop with Burgers vectors of b = a 0 /2 [111] and b = a 0 /2 [111], respectively, which are introduced in bcc-Fe crystal. Then shear stresses of several different magnitudes are applied so that the dislocation moves to meet the SIA loop. General observation is that the SIA loops with diameter of ∼2 nm can be obstacles to dislocation motion, and the strength as obstacles to dislocation motion depends on applied stress. The origin of the stress dependent strength can be explained athermally using the elastic theory of dislocation interaction. In most cases, the SIA loops are absorbed by the edge dislocations to form a large super-jog after the interactions. This suggests a possibility of localized deformation of irradiated bcc-Fe due to the formation of dislocation channeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.