Abstract

Studies of defined mixtures of carcinogenic polycyclic aromatic hydrocarbons (PAH) have identified three major categories of interactions: antagonism; synergism; and additivity depending on the biological model, tissue, route of exposure, and specific PAH. To understand the bases of these interactions we studied binary mixtures of benzo[a]pyrene (B[a]P) and dibenz[a,h]anthracene (DBA) in transformable C3H10T1/2C18 (C3H10T1/2) mouse embryo fibroblast cells in culture. C3H10T1/2 cells treated with binary mixtures of B[a]P and DBA gave less than additive morphological cell transformation based on response additivity. These results were consistent with those reported in mice and rats on the antagonistic effects of B[a]P and DBA on tumorigenesis. 32P-Postlabeling DNA adduct studies revealed that DBA reduced B[a]P-DNA adduct levels by 47% with no effect on DBA-DNA adduct levels. This suggests that one mechanism for the inhibition of morphological cell transformation of binary mixtures of B[a]P and DBA is due to alterations in the metabolic activation of B[a]P.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.