Abstract

Establishing a symbiotic relationship between a human and a exoskeleton is the end goal in many applications in order to provide benefits to the user. However, the literature focusing on the human side of human-exoskeleton interaction has remained less exhaustive than the literature focusing on the design (hardware/software) of the exoskeleton device itself. It is, though, essential to understand how a human adapts his motor control when interacting with an exoskeleton. Motor adaptation is an implicit process carried out by the central nervous system when the body encounters a perturbation, a paradigm that has been extensively studied in the field of human motor control research. When wearing an exoskeleton, even “as-transparent-as-possible”, contact/interaction forces may impact well-known motor control laws in a way that may be detrimental to the user, and even compromise usability in real applications. The present paper investigates how interaction with a backdrivable upper-limb exoskeleton (ABLE) set in “transparent” mode of control affects the kinematics/dynamics of human movement in a simple task. We find that important motor control features are preserved when moving with ABLE but an overall movement slowness occurs, likely as a response to increased inertia according to optimal control simulations. Such a human motor control approach illustrates one possible way to assess the degree of symbiosis between human and exoskeleton, i.e. by grounding on well-known findings in motor control research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call