Abstract

Stochastic coherence (SC) and self-induced stochastic resonance (SISR) are two distinct mechanisms of noise-induced coherent motion. For interacting SC and SISR oscillators, we find that whether or not phase synchronization is achieved depends sensitively on the coupling strength and noise intensities. Specifically, in the case of weak coupling, individual oscillators are insensitive to each other, whereas in the case of strong coupling, one fixed oscillator with optimal coherence can be entrained to the other, adjustable oscillator (i.e., its noise intensity is tunable), achieving phase-locking synchronization, as long as the tunable noise intensity is not beyond a threshold; such synchronization is lost otherwise. For an array lattice of SISR oscillators, except for coupling-enhanced coherence similar to that found in the case of coupled SC oscillators, there is an optimal network topology degree (i.e., number of coupled nodes), such that coherence and synchronization are optimally achieved, implying that the system-size resonance found in an ensemble of noise-driven bistable systems can occur in coupled SISR oscillators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call