Abstract

The understanding of dynamical evolutions of interacting photon pulses in Rydberg atomic ensemble is the prerequisite for realizing quantum devices with such system. We present an approach that efficiently simulates the dynamical processes, using a set of local functions we construct to reflect the profiles of narrowband pulses. For two counter-propagating photon pulses, our approach predicts the distinct phenomena from the widely concerned Rydberg blockade to the previously less noticed significant absorption in the anomalous dispersion regime, which can occur by respectively setting the pulse frequency to the appropriate values. Our numerical simulations also demonstrate how spatially extending photon pulses become deformed under realistic non-uniform interaction over their distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.